Isolating direct photons Measureing jets 1st draft dA section

Richard Seto
University of CA, Riverside
Muon Trigger upgrade meeting
Nov 24, 2003

11/8/03 R. Seto

4

Schedule to LOI for RKS

- ✓ Nov 29- Nosecone simulations done
- Dec 1 first draft of dA section to group
 - http://www.phenix.bnl.gov/phenix/WWW/p/draft/seto/upgrade s/muonnose/LOI/
- Dec 1 Cost and schedule to RKS
 - Edward nosecone, Matthias muons, Ken-trigger
 - http://www.phenix.bnl.gov/phenix/WWW/p/draft/seto/upgrades/muonnose/LOI/costs/
- Dec 3 Cost and schedule to group
- Dec 1 UIUC pre-proposal/ to chair
- Dec 8 to uiuc
- Dec 8 LOI to PHENIX
 - Blue RKS, red others, black everybody, WELDC folks

Update on simulations for nosecone

- How well can I use find the direct photon?
 - Efficiency/background
 - Cuts (pt, isolation)
- How well can I measure x_1, x_2, Q^2
- How well can I measure the Jet
 - Muon stuff, dir photon in central arm, measureing kinematics etc
- Everything at the Hijing/pythia level, smearing tracks/photons
 - Note- I will be sending out results as they come

Finding direct photons in the nemc

- 2 handles
 - Use isolation of direct photon
 - Use spacial resolution to identify pi0's
- Hijing
 - Require particles in nemc
 - Merge photons
 - r<30mr(r<1-2cm)</p>
 - r<6mr (r<3-4mm)
 - Look at energy in $d\eta d\phi \sim 0.26$ (tried a variety UA2)
 - Require < 200 MeV pt (will be ~1-2 GeV) basically nothing
 NO TRACKS will be helped by SI-endcap
- Helped by STAR proposal

Calculating cross section

- Throw dir photon
 - Default > 2.25 GeV
 - Use > 1.25 GeV
- Throw background
 - Central b<1</p>
- Nn cross sections
 - 41 mb (inelastic)
 - Dir photon > 2.25 ~0.001mb
 - Dir photon > 1.25 ~0.0059mb
- A^{1/3} ~6

- So for dir photon > 1.25
 the ratio is
- (197)^{1/3}.0059/41=8.6e-4
- Or 1160 background for every dir photon

Sanity check

- 100 K events
 - 1 dir photon/event
- 4e5*4=1.6e6
- 4x pi+=photons good

- Dndy~5*4e5/1e5*2 ~40
- ~800(AA)/400(npAA)*7=
- **14??**

Defining a jet

Standard jet algorithm

Take
$$R = d\eta d\varphi = 0.7$$

 E_t is for tower or particle

$$E_T = \sum_{i \in R} E_{Ti}$$

$$\eta_{Jet} = \frac{1}{E_T} \sum_{i \in R} E_{Ti} \eta_i$$

$$\phi_{Jet} = \frac{1}{E_T} \sum_{i \in R} E_{Ti} \phi_i$$

 For now I cheat- I know the eta, phi of the jet and take anything within R

Measuring jet energy

- I logzed these
- Now so good? But how well can we measure x?

Entries 18401
Mean x 6.60
Mean y 0.689
RMS x 6.90
RMS y 1.59

h124

Photons $\sim 20\%/\sqrt{E}$ Hadrons $\sim 100\%/\sqrt{E}$

- Require center of jet in nemc
- Measure only tracks in nemc

Meas

Measureing x

$$x_{1,2} = \frac{p_T}{\sqrt{S}} (e^{\pm y_{\gamma}} + e^{\pm y_{Jet}})$$

 $Log(x) \sim -2.4$ x=.0038±.0015

11/8/03 assume $\eta = y$

R. Seto

Conclude

- So far it looks as if we can measure the direct photons
- It also looks like we will have a reasonable measurement of x_2

11/8/03 R. Seto